• <blockquote id="6i0us"><label id="6i0us"></label></blockquote><label id="6i0us"><sup id="6i0us"></sup></label>
  • 成考院校 咨詢入口
    您現在的位置:首頁 > 備考資料 > 高升專試題 > 2022年成考高起點《數學》考點復習(二)

    2022年成考高起點《數學》考點復習(二)

    更新時間:2022-06-25 08:41:00  來源:大牛教育成考網  點擊量:

    導讀:下文整理的入學考試考點是成考高起點數學科目考試,函數部分考試內容有關知識,考生可進行了解參考。

      1、函數值域及求法

      函數的值域及其求法是近幾年高考考查的重點內容之一??忌赏ㄟ^本節知識點的方法進修學習,靈活掌握求值域的各種方法,并會用函數的值域解決實際應用問題。

      例如:設m是實數,記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。

      證明:當m∈M時,f(x)對所有實數都有意義;反之,若f(x)對所有實數x都有意義,則m∈M。

      當m∈M時,求函數f(x)的最小值。

      求證:對每個m∈M,函數f(x)的最小值都不小于1。

    成考高起點《數學》考點復習(二)

      2、奇偶性與單調性(一)

      函數的單調性、奇偶性是高考的重點內容之一,考查內容靈活多樣??忌M行理解奇偶性、單調性的定義,掌握判定方法,正確認識單調函數與奇偶函數的圖象。

      例如:設a>0,f(x)= 是R上的偶函數,求a的值;證明:f(x)在(0,+∞)上是增函數。

      3、奇偶性與單調性(二)

      函數的單調性、奇偶性是高考的重點和熱點內容之一,特別是兩性質的應用更加突出。本節主要幫助考生學會怎樣利用兩性質解題,掌握基本方法,形成應用意識。

      例如,已知偶函數f(x)在(0,+∞)上為增函數,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。

      【推薦閱讀:高起專成教數學題該怎么復習

      案例探究:

      已知奇函數f(x)是定義在(-3,3)上的減函數,且滿足不等式f(x-3)+f(x2-3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數g(x)=-3x2+3x-4(x∈B)的最大值。

      4、指數函數、對數函數問題

      指數函數、對數函數是高起點數學考試考查的重點內容之一,本節主要幫助考生掌握兩種函數的概念、圖象和性質并會用它們去解決某些簡單的實際問題。

      例如,設f(x)=log2 ,F(x)= +f(x)。

      試判斷函數f(x)的單調性,并用函數單調性定義,給出證明;

      若f(x)的反函數為f-1(x),證明:對任意的自然數n(n≥3),都有f-1(n)> ;

      若F(x)的反函數F-1(x),證明:方程F-1(x)=0有惟一解。

      以上是成考高起點數學科目考試,函數部分考試內容有關知識,考生可進行了解。更多成人高考復習資料,可站內搜索相關文章了解更多。

    ?

    上一篇:2022年成考高起點英語單詞匯總(二)

    下一篇:2022年廣州成人高考入學考試題型

    ?

    成人高考

    大牛教育成考網
    ?

    Copyright © 大牛教育成考網 版權所有 粵ICP備18016435號 全國免費咨詢電話:400 166 9192
    廣州市天河區五山路華南理工大學國家科技園金華園區2樓C208-214室(總部)
    此網站信息最終解釋權屬于廣州天資教育科技有限公司

    聲明:本站為廣州成考民間交流網站,成人高考動態請各位考生以省教育考試院、各市成考辦通知為準。

    網上報警